

Übersicht

Namen für RAYLASE Ablenkeinheiten und Subsysteme sind nach folgendem Schema aufgebaut:

Primär-Name enthält Produkt-Gruppe, Typ, Apertur, Wellenlänge, Varianten

Detail-Beschreibung enthält Substratmaterial, mechanische Ausführung, Tuning, elektrische

Anschlüsse, Kundennummer

2-Achs Ablenkeinheiten

Aufbau und Codierung Primär-Name (max. 32 Zeichen)

GG-TTTT-AA [WWWWWWWW] VV Pxx/D

GG Artikel Gruppenname (2 Zeichen)

MS MINISCAN
SS SUPERSCAN
TS TURBOSCAN

RL RL ABLENKEINHEIT

TTTT Typ (optional 0-5 Zeichen)

 I / II / III / IV / V
 Serie

 E
 Enhanced

 K
 Kit

 HD
 HighDyn

AA Apertur (2 Zeichen)

07 ... 70 Apertur-Durchmesser [mm]

[WWWWW] Wellenlänge / Beschichtung (3-13 Zeichen)

[xxxx] Wellenlänge xxxx [nm]

[xxxx+zz]Wellenlänge xxxx [nm] + Beschichtung mit zz[xxxx-yyyy]Wellenlängen-Bereich von xxxx bis yyyy [nm][xxxx+yyyy]Wellenlängen-Kombination xxxx und yyyy [nm]

[xxxx-yyyy+zz] Wellenlängen-Bereich von xxxx bis yyyy [nm] + Beschichtung mit zz

[AG] Silber/Argentum, 400 nm – 1064 nm

[AL] Aluminium [AU] Gold/Aurum [C] 10600 nm

[C*] 9000 nm – 11000 nm

[DY] 532 nm

[DY+Y] 532 nm + 1064 nm

[TY] 355 nm [Y] 1064 nm

[YIL] 1064 nm + Illumination (850 - 870 nm für Kamera)

Freigegeben: 07.02.2023 / BDa Version: 23 Geändert: 07.02.2023 / MMa

R:\Projekte\Verwaltung\Produktnamensgebung\Ausgabe\ProduktNamensgebung_V23.docx

VV	V ariante	(optional 3 Zeichen)
	V1V9	Produktionstechnische Unterscheidung
		z. Bsp. vom Standard abweichende Spiegelauslenkung
	Spezifisch bei	
	MS-II-10:	
	VA1	DSB 2 + 8320 + 9 mm + ±22,5°
	VA2	DSB 3 + 8320 + 9 mm + ±22,5°
	VA4	DSB 3 + 8320 + 9 mm + ±22,5° + Connector 90°
	VB1	DSB 2 + 8320 + 10 mm + ±22,5°
	VB2	DSB 3 + 8320 + 10 mm + ±22,5°
	VC1	DSB 2 + 8320 + 9 mm + ±22,5° + Neck
	VC2	DSB 3 + 8320 + 9 mm + ±22,5° + Neck
	VC3	DSB 3 + 8320 + 9 mm + ±22,5° + Neck + Connector 180°
	VD1	DSB 2 + 8320 + 10 mm + ±22,5° + Neck
	VD2	DSB 3 + 8320 + 10 mm + ±22,5° + Neck
	VE1	DSB 2 + 8320 + 9 mm + ±23,5°
	VE2	DSB 3 + 8320 + 9 mm + ±23,5°
	VF1	DSB 2 + 8320 + 10 mm + ±23,5°
	VF2	DSB 3 + 8320 + 10 mm + ±23,5°
	VG1	DSB 2 + 8320 + 10 mm + X±23,4° Y±23,8° opt.
	VG2	DSB $3 + 8320 + 10 \text{ mm} + X \pm 23,4^{\circ} \text{ Y} \pm 23,8^{\circ} \text{ opt}.$
	VH1	DSB 2 + 8320 + 10 mm + X±23,4° Y±23,8° opt. + Neck
	VH2	DSB 3 + 8320 + 10 mm + X±23,4° Y±23,8° opt. + Neck
Р	Prototyp Version	(optional 3 Zeichen)
	Pxx	Unterscheidung von Prototyp Version xx (00 99)
D	D Kundenspezifisches P	Produkt (optional 1 Zeichen)
	D	Kundenspezifisches Produkt

Freigegeben: 07.02.2023 / BDa Version: 23 Geändert: 07.02.2023 / MMa R:\Projekte\Verwaltung\Produktnamensgebung\Ausgabe\ProduktNamensgebung_V23.docx

Aufbau und Codierung Detail-Beschreibung (max. 32 Zeichen)

SS-[MMM]-TT-CC /xxxxx

SS Spiegel- /Linsenmaterial

BE Beryllium

BA Beryllium / Aluminium OG Optisches Glas

QU Quarz SI Silizium

SC Silizium Carbid

[MMM] Mechanische Ausführung (3-13 Zeichen)

Kühlung - Pflichtangabe

[N] keine Kühlung [W] Wasserkühlung

[W2] Wasserkühlung mit 90° Winkel

[W3] Wasserkühlung mit Anschlüssen zur Lasereintritts-Seite

[A] Luftkühlung

Sonst. Mech. Ausführung – Optional – in der Reihenfolge der Liste

[L] Kopf mit größerer Eingangsapertur für LTM
[F] Kopf kombiniert mit FS (Farbe Housing Cover)

[P] Kopf mit Pyrometer

[T] Kopf mit Spiegel-Kipp-Funktion

[S] Kopf aus Edelstahl

[U] Bohrbild für Befestigung von unten

[G] Standard Drift

[K] Galvo Temperatur Messung

TT Tuning (2 Zeichen)

Optimiertes Tuning für:

C lange Vektoren mit sehr hoher Markiergeschwindigkeit FV bestmögliches Verhältnis aus hoher Dynamik und hoher

Geschwindigkeit

H präzise Strahlführung und schnellste Strahlrichtungsumkehr beim

Hatching

H1 schnelle Sprünge mit hoher Frequenz

LN weites Applikationsspektrum

(lange Vektoren mit niedriger Welligkeit und hoher

Markiergeschwindigkeit)

LS lange Linien mit höchster Geschwindigkeit

M präzise Strahlführung mit kleinsten Eckradien und geringem

Schleppverzug

MA Beschriftungsanwendungen

PL lange Vektoren mit hoher Geschwindigkeit und sehr präziser

Strahlführung

RA kleine Vektoren und scharfe Ecken

(niedrige Welligkeit und hohe Dynamik)

ST Sprünge oder lange Vektoren mit sehr hoher

Markiergeschwindigkeit (minimale Sprungantwortzeit)

VC breites Anwendungsspektrum mit Schwerpunkt auf

Prozessgeschwindigkeit

W lange Vektoren mit sehr hoher Markiergeschwindigkeit und präziser

Strahlführung

Freigegeben: 07.02.2023 / BDa Version: 23 Geändert: 07.02.2023 / MMa

CC	Connector	(2 Zeichen)
	D1	25-pol D-Sub-Stecker
	D2	25-pol D-Sub-Stecker + 9-pol D-Sub-Stecker
	X2	25-pol D-Sub-Stecker + 3W3 D-Sub-Stecker
	S1	25-pol D-Sub-Stecker (SL2-100 + Power)
	S2	9-pol D-Sub-Stecker + 3W3 D-Sub-Stecker
	SA	25-pol D-Sub-Stecker (analog) + 9-pol D-Sub-Stecker (SL2-100) +
		3W3 D-Sub-Stecker (Power)
	SX	25-pol D-Sub-Stecker + 9-pol D-Sub-Stecker +
		3W3 D-Sub-Stecker
	A1	25-pol D-Sub-Stecker (analog)
	A2	25-pol D-Sub-Stecker + 9-pol D-Sub-Stecker (analog)
	RX	25-pol D-Sub-Stecker + 9-pol D-Sub-Stecker +
		3W3 D-Sub-Stecker (XY2-100 + RL3-100 + Power)
/xxxxx	D Kunden Nummer	(optional 6 Zeichen)
	5-stellige ERP Ku	undennummer xxxxx

Freigegeben: 07.02.2023 / BDa Version: 23 R:\Projekte\Verwaltung\Produktnamensgebung\Ausgabe\ProduktNamensgebung_V23.docx

Geändert: 07.02.2023 / MMa

Fokusierende Ablenkeinheiten, Fokus-Shifter

Aufbau und Codierung Primär-Name (max. 32 Zeichen)

GG-TTTT-AA [WWWWWWWW] VV Pxx/D

GG Artikel Gruppenname (2 Zeichen)

AS AXIALSCAN
FS FOCUSSHIFTER
LT LTM Modul

TTTT Typ (optional 0-5 Zeichen)

F LTM Typ FOCUSSHIFTER

FC LTM Typ FOCUSSHIFTER Compact Size

1.5 / 2 / 3 Verstärkungsfaktor bei FOCUSSHIFTER – nach F/FC

K Ki

II Digitale 3-Achs Ablenkeinheit mit PWM

Fxxx Brennweite xxx [mm]

FTPN AS-Fiber, Einkopplung Laser TruePulse nano AS-Fiber, Einkopplung kollimierter Strahl

RD RAYVOLUTION DRIVE

AA Apertur (2 Zeichen)

03 ... 70 Apertur-Durchmesser [mm]

[WWWWW] Wellenlänge / Beschichtung (3-13 Zeichen)

[xxxx] Wellenlänge xxxx [nm]

[xxxx+zz]Wellenlänge xxxx [nm] + Beschichtung mit zz[xxxx-yyyy]Wellenlängen-Bereich von xxxx bis yyyy [nm][xxxx+yyyy]Wellenlängen-Kombination xxxx und yyyy [nm]

[xxxx-yyyy+zz] Wellenlängen-Bereich von xxxx bis yyyy [nm] + Beschichtung mit zz

[AG] Silber/Argentum, 400 nm – 1064 nm

[AL] Aluminium [AU] Gold/Aurum [C] 10600 nm

[C*] 9000 nm – 11000 nm

[DY] 532 nm

[DY+Y] 532 nm + 1064 nm

[TY] 355 nm [Y] 1064 nm

[YIL] 1064 nm + Illumination (850 - 870 nm für Kamera)

VV Variante (optional 2 Zeichen)

V1..V9 Produktionstechnische Unterscheidung

z. Bsp. vom Standard abweichende Spiegelauslenkung

VR Anschluss Rear Side VT Anschluss Top Side

P Prototyp-Version (optional 3 Zeichen)

Pxx Unterscheidung von Prototyp Version xx (00 ... 99)

D Kundenspezifisches Produkt (optional: 1 Zeichen)

D Kundenspezifisches Produkt

Freigegeben: 07.02.2023 / BDa Version: 23 Geändert: 07.02.2023 / MMa

Aufbau und Codierung Detail-Beschreibung (max. 32 Zeichen)

SS-[MMM]-TT-CC /xxxxx

SS Spiegel- /Linsenmaterial (2 Zeichen)

BE Beryllium

BA Beryllium / Aluminium OG Optisches Glas

QU Quarz
SI Silizium
SC Silizium Carbid
ZS Zink Selenid
ZF Zink Sulfid

[MMM] Mechanische Ausführung (3-13 Zeichen)

Kühlung - Pflichtangabe

[N] keine Kühlung [W] Wasserkühlung

[W2] Wasserkühlung mit 90° Winkel Sonst. Mech. Ausführung – Optional – in der Reihenfolge der Liste

[10] AS: minimale Feldgröße [cm]

[M] LTM: Motorisierung

[MV] Motorisierungsvorbereitung

[P] Laser Pointer
[D] Staubschutzkappe
[A] Luftkühlung

[B] Prozesslicht Breitband-Ausgang

[C] AS-Fiber: Prozesslicht Breitband-Ausgang mit RAYSPECTOR

[H] High Performance Scanner (vollständig digitale Galvos)

[T] AS-Fiber: Faser Einkopplung Top Side
 [R] AS-Fiber: Faser Einkopplung Rear Side
 [F] AS-Fiber: Faser Einkopplung Front Side
 [Q] AS-Fiber: Faser Stecker QBH / RQB
 [D] AS-Fiber: Faser Stecker QD / LLK-D
 [L] AS-Fiber: Faser Stecker Q5 / LLK-B

[xxxx] AS-Fiber: Arbeitsabstand [mm]

[T1] AS-Fiber: Einkopplung Top Side + RAYSPECTOR mit Spiegel
 [T2] AS-Fiber: Einkopplung Top Side + RAYSPECTOR mit Dichroit
 [T3] AS-Fiber: Einkopplung Top Side + RAYSPECTOR mit 850 nm

Spiegel für kollimierten Strahl und Verwendung mit OCT

[R1] AS-Fiber: Einkopplung Rear Side + RAYSPECTOR mit Spiegel
 [R2] AS-Fiber: Einkopplung Rear Side + RAYSPECTOR mit Dichroit

[G] Standard Drift

[K] Galvo Temperatur Messung

Freigegeben: 07.02.2023 / BDa Version: 23 Geändert: 07.02.2023 / MMa

TT	Tuning	(2 Zeichen)
	0	Optimiertes Tuning für
	C FV	lange Vektoren mit sehr hoher Markiergeschwindigkeit bestmögliches Verhältnis aus hoher Dynamik und hoher
	FV	Geschwindigkeit
	Н	präzise Strahlführung und schnellste Strahlrichtungsumkehr beim
	11	Hatching
	H1	schnelle Sprünge mit hoher Frequenz
	LN	weites Applikationsspektrum
		(lange Vektoren mit niedriger Welligkeit und hoher
		Markiergeschwindigkeit)
	LS	lange Linien mit höchster Geschwindigkeit
	M	präzise Strahlführung mit kleinsten Eckradien und geringem
		Schleppverzug
	PL	lange Vektoren mit hoher Geschwindigkeit und sehr präziser
		Strahlführung
	RA	kleine Vektoren und scharfe Ecken
		(niedrige Welligkeit und hohe Dynamik)
	ST	Sprünge oder lange Vektoren mit sehr hoher
		Markiergeschwindigkeit (minimale Sprungantwortzeit)
	VC	breites Anwendungsspektrum mit Schwerpunkt auf
		Prozessgeschwindigkeit
	W	lange Vektoren mit sehr hoher Markiergeschwindigkeit und präziser
		Strahlführung
CC	Connector	(2 Zeichen)
	D1	25-pol D-Sub-Stecker
	D2	25-pol D-Sub-Stecker + 9-pol D-Sub-Stecker
	X2	25-pol D-Sub-Stecker + 3W3 D-Sub-Stecker
	S1	25-pol D-Sub-Stecker (SL2-100 + Power)
	S2	9-pol D-Sub-Stecker + 3W3 D-Sub-Stecker
	S3	2x 9-pol D-Sub-Stecker + 3W3 D-Sub-Stecker
		(2x SL2-100 + Power)
	S4	2x 9-pol D-Sub-Stecker + 3W3 D-Sub-Stecker
		(2x SL2-100 + Power für 2x SL2 + RL3)
	SX	25-pol D-Sub-Stecker + 9-pol D-Sub-Stecker +
		3W3 D-Sub-Stecker
	RX	25-pol D-Sub-Stecker + 9-pol D-Sub-Stecker +
		3W3 D-Sub-Stecker (XY2-100 + RL3-100 + Power)
	E2	6-pol Epic-Stecker + 17-pol Epic-Stecker
	E3	6-pol Epic-Stecker + 17-pol Epic-Stecker + M12 Stecker
	E4	6-pol Epic-Stecker + 17-pol Epic-Stecker + M8 Stecker
	E5	6-pol Epic-Stecker + 17-pol Epic-Stecker + M8 + M12 Stecker
	H1	26-pol DSub-Stecker High Density + 3W3 D-Sub-Stecker
/xxxxx	D Kunden Nummer	(optional 6 Zeichen)
/^^^	5-stellige ERP Kun	
	J-Stellige LIXE Kull	CONTROL AAAAA

Freigegeben: 07.02.2023 / BDa Version: 23 R:\Projekte\Verwaltung\Produktnamensgebung\Ausgabe\ProduktNamensgebung_V23.docx Geändert: 07.02.2023 / MMa

AM Ablenkeinheiten

Aufbau und Codierung Primär-Name (max. 32 Zeichen)

GG-TTTT-AA [WWWWWWWW] VV Pxx/D

GG Artikel Gruppenname (2 Zeichen)

AM Additive Manufacturing Module

TTTT Typ (optional: 0-5 Zeichen)

III Serie/Generation

F063 63 mm Brennweite (10 µm Faser Single Mode)
F085 85 mm Brennweite (14 µm Faser Single Mode)
F075 75 mm Brennweite (50..200 µm Faser Multi Mode)

F050 50 mm Brennweite (Faser Ring Mode)

RD RAYVOLUTION DRIVE

AA Apertur (2 Zeichen)

07 ... 70 Apertur-Durchmesser [mm]

[WWWWW] Wellenlänge / Beschichtung (3-13 Zeichen)

[xxxx-yyyy+AL] Wellenlängen-Bereich von xxxx bis yyyy [nm] + Aluminium

VV Variante (für zukünftige Verwendung)

Prototyp Version (optional 3 Zeichen)

Pxx Unterscheidung von Prototyp Version xx (00 ... 99)

D kundenspezifisches Produkt

Freigegeben: 07.02.2023 / BDa Version: 23 Geändert: 07.02.2023 / MMa

Aufbau und Codierung Detail-Beschreibung (max. 30 Zeichen)

SS-[MMM]-TT-CC /xxxx

SS Spiegel- /Linsenmaterial

SC Silicium Carbid

QU Quarz

[MMM] Mechanische Ausführung (3-13 Zeichen)

[W] Wasserkühlung

[B] Prozesslicht Breitband-Ausgang

[C] Prozesslicht Breitband-Ausgang mit RAYSPECTOR

[A] Luftkühlung

[H] High Performance Scanner (vollständig digitale Galvos)

[Q] Faser Stecker QBH / RQB
[D] Faser Stecker QD / LLK-D
[L] Faser Stecker Q5 / LLK-B
[xxxx] Arbeitsabstand [mm]

[R2] Einkopplung Rear Side + RAYSPECTOR mit Dichroit

[K] Galvo Temperatur Messung

TT Tuning (2 Zeichen)

H Optimiertes Tuning für präzise Strahlführung und schnellste

Strahlrichtungsumkehr beim Hatching

CC Connector (2 Zeichen)

R2 9-pol D-Sub-Stecker (RL3-100) + 3W3 D-Sub Stecker

/xxxxx D Kunden Nummer (optional 6 Zeichen)

5-stellige ERP Kundennummer xxxxx

Freigegeben: 07.02.2023 / BDa Version: 23 Geändert: 07.02.2023 / MMa

R:\Projekte\Verwaltung\Produktnamensgebung\Ausgabe\ProduktNamensgebung_V23.docx